Step 1: Go to https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml#igrfwmm

Latitude:	40° 7' 2" O S O N						
Longitude:	88° 12' 15" • W • E						
Elevation: OGPS OMean sea level							
	0 Riometers 🗸						
Model:	NMM (2019-2024) O IGRF (1590-2024) EMM (2000-2019)						
Start Date:	Year 2020 ✔ Month 10 ✔ Day 26 ✔						
End Date:	Year 2020 V Month 10 V Day 26 V						
Step size:	1.0						

	Magnetic Field							
Model Used:	WMM-2020							
Latitude:	40° 7' 2" N							
Longitude:	88° 12' 15" W						•	
Elevation:	0.0 km Mean Sea Level							
Date	Declination (+E -W)	Inclination (+D -U)	Horizontal Intensity	North Comp (+ N -S)	East Comp (+ E - W)	Vertical Comp (+ D - U)	Total Field	
2020-10-26	-3° 19' 49"	67° 32' 11"	20,075.6 nT	20,041.7 nT	-1,166.2 nT	48,553.8 nT	52,540.5 nT	
Change/year	-0° 3' 23"/yr	-0° 4' 52"/yr	27.6 nT/yr	26.4 nT/yr	-21.3 nT/yr	-128.2 nT/yr	-107.9 nT/yr	
Uncertainty	0° 23'	0° 13'	128 nT	131 nT	94 nT	157 nT	145 nT	
	•							

Step 5: This calculated number tells you the downward component of the Earth's magnetic field at your location in units of nano-Tesla (nT). Since you want the upward component in units of micro-Tesla (μ T), you need to divide by -1000 to get B_{Fz}.

In this example $B_{Fz} = 48553.8/(-1000) = -48.55 \ \mu\text{T}.$

Your B_{Ez} value will probably be negative if you are in the northern hemisphere, and it will probably have a magnitude similar to the number shown. If you get something ten times bigger or smaller then you should make sure you didn't make a mistake.

Select which output controls to display when your remote is on:

✓ DAC (analog) ✓ D6 (digital) ✓ Buzzer □ D4 (PWM) □ D5 (PWM)

Step 6: Put the B_{Ez} value that you found as described on the previous few pages into the Local Bz box on the Options and Preference panel.

Step 7: Restart your IOLab application and calibrate the magnetometer. Your new value of B_{Ez} will be used in the calibration.