Mats Favorite IOLab Activities

This is a growing list and is still very incomplete - I will add several more as I have time. This file was last updated on Feb/21/2016.

If you send me PowerPoint slides showing your own favorites in the same general format as these, I will be glad to add them and give you all the credit.

Ask students to match the following plots by moving their own IOLab devices (acceleration is hardest)

Wheel (100 Hz) **Vy (m/s)** Ay (m/s²)

Wheel (100 Hz) □ Ry (m) ☑ Vy (m/s) □ Ay (m/s²)

Wheel (100 Hz) Ry (m) Vy (m/s) Ay (m/s²)

Roll from one hand to the other on horizontal desk

Roll from one hand to the other on horizontal desk

Slope of displacement = average velocity

Wheel (100 Hz) **Vy (m/s) Ay (m/s²)**

Roll from one hand to the other on horizontal desk

Slope of velocity = average acceleration

Roll from one hand to the other on horizontal desk Area of velocity = change in position Area of acceleration = change in velocity

Wheel (100 Hz) **Vy (m/s) Ay (m/s²)**

Shove up a ramp and let it roll up then back down.

Shove up a ramp and let it roll up then back down. Understand why the acceleration has the same sign even though velocity does not.

Shove up a ramp and let it roll up then back down. Understand why the acceleration has a slightly different value on the way up and the way down.

Shove up a ramp and let it roll up then back down. Calculate the angle of the ramp and the force of kinetic friction between the axle and the wheels.

Newton's Laws (Force sensor)

Lift device using force probe - hold still - put back down

Calculate mass of device from weight

(this is basically just a check that the calibration was done correctly and that students understand how to "zero" the force. The answer is 2 Newtons if they do this correctly)

Sensors (Remote 1) Force (4800 Hz) V Fy (N) Accelerometer 4.0 Analog 7 3.5 Analog 8 3.0 Analog 9 2.5 Barometer 2.0 Battery 1.5 1.0 Digital 0.5 Electrocardiogram (3) 0.0 Electrocardiogram (9) -0.5 **Force** (4800 Hz) -1.0 Gyroscope -1.5 High Gain -2.0 Light -2.5 Ż 2 ġ. 6 8 Magnetometer 4 5 Microphone Q.-4 Smoothing Rezero sensor Reverse y-axis ah. 1 -FFT Thermometer Wheel

(Force & Accelerometer sensors) Hang device from force probe & move it up & down

Observe relationship between F and a

- Accelerometer (800 Hz)
 Analog 7
- Analog 8
- Analog 9
- Barometer
- Battery
- Digital

Electrocardiogram (3)

- Electrocardiogram (9)
- **Force** (800 Hz)

Gyroscope

High Gain

- Light
- Magnetometer

Microphone

- Thermometer
- Wheel

(Force & Accelerometer sensors)

Hang device from force probe – moving up & down Calculate mass of device using parametric plot of F vs a (slope = mass)

Accelerometer vs Force 100 Hz

(Force & Wheel sensors)

Attach extension spring to force probe. Roll device while holding spring. Observe relationship between Displacement and Force

(Force & Wheel sensors)

Attach extension spring to force probe. Roll device while holding spring. Use parametric plot to measure spring constant (F = -kx)

Wheel vs Force 100 Hz

(Force & Wheel sensors)

Push quickly on the force sensor and plot force vs velocity Integrate Fdt during the push and show that it equals ΔP

Force (200 Hz) **V** Fy (N)

Wheel (100 Hz) □ Ry (m) ☑ Vy (m/s) □ Ay (m/s²)

(Two devices & Two force sensors)

Read both force sensors during head-on collision to illustrate Newton's Third law as well as Conservation of Momentum

(Modified Atwood's Machine using one devices + box)

Read both force sensors and wheel of rolling device. Study acceleration vs Tension, F_{net} , find friction, much more.

(Modified Atwood's Machine using two devices)

Read both force sensors and wheel of rolling device. Study F_{net} on both units, rolling friction, and string-table friction...

(Gyroscope & Accelerometer)

Toss IOLab into the air so that it spins around z-axis while in free-fall. Correlate ω_z (gyroscope) and (a_x, a_y) (accelerometer) to study centripetal acceleration: $a_c = \omega^2 R$. Accelerometer 400 Hz

Simple Harmonic Motion (Gyroscope sensor) Use IOLab to build a torsion pendulum Observe that period is independent of amplitude

Gyroscope (190 Hz) $\checkmark \Omega x$ (rad/s) $\checkmark \Omega y$ (rad/s) $\checkmark \Omega z$ (rad/s)

Simple Harmonic Motion

(Gyroscope and Accelerometer sensors)

Use IOLab to build a torsion pendulum

Study correlation between ω and a_x (centripetal acceleration).

Analog 7

Analog 8

Analog 9

Battery

Digital

Force

High Gain Light

Microphone

Wheel

Thermometer

Barometer

Accelerometer (400 Hz) Ax (m/s²) Ay (m/s²) Az (m/s²) Sensors (Remote 1) Δt: 0.17941 s Accelerometer (400 Hz) μ: 0.211 m/s² - σ: 0.031 m/s² a: 0.04 m/s s: 0.50 m/s³ (r²: 0.73) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Electrocardiogram (3) -0.5 -1.0 Electrocardiogram (9) 0 10 20 30 40 50 60 70 80 90 100 110 Gyroscope (190 Hz) **‡** • Smoothing di 🗌 4 FFT Reverse y-axis 1 --Magnetometer (80 Hz)

Simple Harmonic Motion (Gyroscope and Accelerometer sensors) Use IOLab to build a torsion pendulum Use parametric plot of $a_x vs \omega_y$ plot to find quadratic $a_c = \omega^2 R$.

Gyroscope vs Accelerometer 100 Hz

Simple Harmonic Motion

(Accelerometer sensor)

Use IOLab as an oscillating mass on a spring. Study ω versus effective k and mass to find $\omega^2 = k/m$. Change k by hooking up springs in series and in parallel.

35

Force & Pressure

(Pressure sensor)

Put IOLab in a Ziploc bag. Use pressure change and area to calculate the weight of a book or other heavy object. (Weight = Δ Pressure *Area)

Barometer (100 Hz) **Pressure (kPa)**

(Magnetometer)

Find the direction of the Earths field where you live. (Adjust device on a horizontal table until Bx = 0 and By = positive and notice the large negative magnitude of Bz. Calculate downward dip-angle.)

(Magnetometer)

Investigate field in 3D as you move device over a permanent magnet.

(Magnetometer)

Investigate field in 3D as you energize a current loop near device.

(Magnetometer & Wheel)

Investigate field from a straight current-carrying wire. (Direction of field given by right-hand-rule. Magnitude proportional to I/R.)

Wheel (100 Hz) Vy (m/s) Ay (m/s²)

(Magnetometer & Wheel)

Investigate field from a straight current-carrying wire. (Direction of field given by right-hand-rule. Magnitude proportional to I/R.)

Wheel vs Magnetometer 100 Hz

Magnetic Induction

(High Gain G+/G- Input)

Move permanent magnet or current loop near loop of wire connected to G+/G- inputs to investigate Faradays Law. (Direction of induced *emf* given by right-hand-rule. Magnitude proportional to d\u00f6/dt)

Magnetic Induction

(High Gain G+/G- Input)

Spin permanent magnet near loop connected to G+/G- inputs to investigate Faradays Law. (Direction of induced *emf* given by right-hand-rule. Magnitude proportional to ω.

